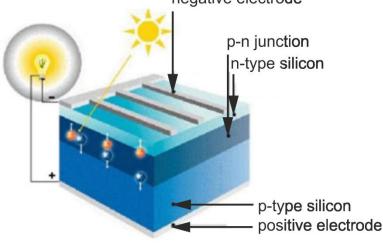


Dobór modułów PV i inwertera

dr hab. inż. Tomasz Teleszewski

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

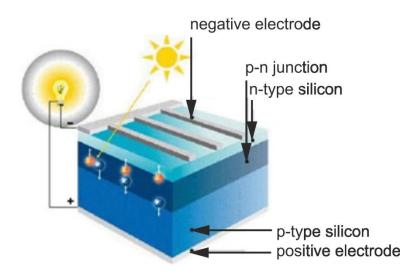
Selection of PV modules and inverter


Tomasz Teleszewski, DSc, PhD, Eng.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

The principle of operation of a photovoltaic cell

• The principle of operation of photovoltaic panels is that the photovoltaic cells that make up the panels convert solar energy into electricity. For this purpose, a photon (that is, the minimum unit of light) falls on the silicon wafer which is the construction of the photovoltaic cell. The light unit is absorbed by the silicon and knocks the electron out of position forcing it to move. This movement is the flow of electric current. By using a p-n type semiconductor junction, it is possible to connect this process with the circulation of electrons in the power grid, thus transforming



INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

The principle of operation of a photovoltaic cell

• A photovoltaic cell is made of two plates of appropriately modified silicon (Si). One is saturated with phosphorus (it is the so-called N-type semiconductor, N-type silicon), and the other with boron (P-type semiconductor, P-type silicon). Both plates have electrodes that connect them into a single circuit. The operation of the cell is therefore based on the principle of the P-N junction.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Types of photovoltaic cells - comparison

Monocrystalline panels. They are characterized by high efficiency, ranging from 14-20%, and the highest durability. They are made of one monolithic silicon crystal. Their color is dark and uniform. They have an octagonal shape, which allows us to save material during production. These panels are also characterized by a higher price on the market.

Polycrystalline panels. They are made of photovoltaic cells for which a large amount of silicon crystals is used. Unlike monocrystalline panels, they have a blue color and are not uniform. The square shape works best for these panels. The efficiency varies between 12-15% and the price is not high.

Amorphous silicon panels. They have the lowest efficiency, ranging from 6-10%, and also a very low price. They are characterized by a uniform brown color.

Concentrator photovoltaics (CPV) (also known as concentration photovoltaics) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

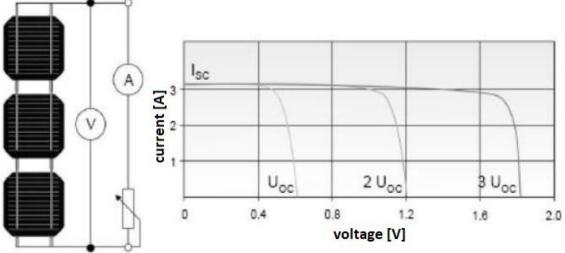
Types of photovoltaic cells

Solar Cell Type	Efficiency Rate	Advantages	Disadvantages
Monocrystalline Solar Panels (Mono-SI)	~20%	High efficiency rate; optimised for commercial use; high life-time value	Expensive
Polycrystalline Solar Panels (p-Si)	~15%	Lower price	Sensitive to high temperatures; lower lifespan & slightly less space efficiency
Thin-Film: Amorphous Silicon Solar Panels (A-SI)	~7-10%	Relatively low costs; easy to produce & flexible	shorter warranties & lifespan
Concentrated PV Cell (CVP)	~41%	Very high performance & efficiency rate	Solar tracker & cooling system needed (to reach high efficiency rate)

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

When carrying out the assembly of a photovoltaic installation, it is worth considering how to connect photovoltaic panels with each other. They can be connected in two ways, namely in parallel or in series. Both one way of joining the panels and the other have slightly different advantages that come from them.

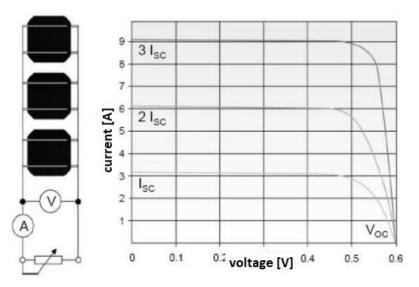
In small installations, we use a series or parallel connection. The choice of connection of individual panels should be made at the stage of designing the installation. Serial connection is the most convenient for sizing and subsequent operation of the inverter, while parallel connection also has typical utility advantages. This type of panel connection results in greater efficiency when installed in a place that does not receive the maximum amount of sunlight. Therefore, the parallel connection undoubtedly increases the efficiency of the installation on cloudy days.



INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Serial connection of photovoltaic panels

When connecting photovoltaic panels in series, you should know that the output voltage that will be supplied to the inverter will be the sum of the voltages of all individual panels. It is different when it comes to the amperage. The maximum amperage will be constant and exactly like a single panel. It is worth remembering that all installed photovoltaic panels should have the same maximum current. Failure to do so may result in unforeseen behavior of the inverter. Not only that, the failure of the photovoltaic installation during higher energy consumption is almost certain.

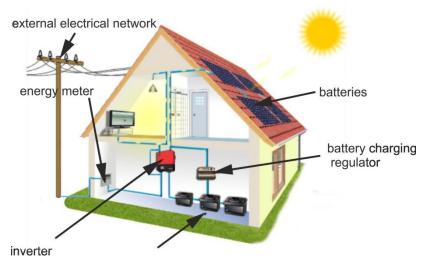


INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Parallel connection of photovoltaic panels

Parallel connection of panels results in the fact that the total output voltage is always the same, while the maximum current is the sum of the individual panel intensities. Similar to series connection and parallel connection has its rules. Modules with different voltages cannot be connected to each other, which may result in a failure in the installation, destruction of the panel, or even damage to the inverter.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654



Hybrid on-grid, off-grid photovoltaic installations with energy storage

If we decide to install a photovoltaic system, it is usually an on-grid system connected to an external power grid. An alternative is a hybrid on-grid or off-grid installation, with energy stored in batteries.

In the most popular on-grid installations, photovoltaic panels use the sun's rays and generate energy in the form of direct current. Then, inverters for photovoltaics turn it into alternating current, thus supplying all devices and equipment such as a computer, washing machine or refrigerator.

If we add batteries for energy storage to a PV installation, it can change to an on-grid hybrid system (still connected to the grid) or an off-grid system (working off-grid). The produced surpluses are then stored in special batteries and are not directed to the power grid (in the case of off-grid systems). On-grid hybrid systems, once the batteries are charged, can also channel surplus energy to the grid.

photovoltaic cells

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Solar inverter

A solar inverter or PV inverter, is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Solar inverters may be classified into four broad types:

Stand-alone inverters, used in isolated systems where the inverter draws its DC energy from batteries charged by photovoltaic arrays. Many stand-alone inverters also incorporate integral battery chargers to replenish the battery from an AC source, when available. Normally these do not interface in any way with the utility grid, and as such, are not required to have anti-islanding protection.

Grid-tie inverters, which match phase with a utility-supplied sine wave. Grid-tie inverters are designed to shut down automatically upon loss of utility supply, for safety reasons. They do not provide backup power during utility outages.

Battery backup inverters, are special inverters which are designed to draw energy from a battery, manage the battery charge via an onboard charger, and export excess energy to the utility grid. These inverters are capable of supplying AC energy to selected loads during a utility outage, and are required to have anti-islanding protection.

Intelligent hybrid inverters, manage photovoltaic array, battery storage and utility grid, which are all coupled directly to the unit. These modern all-in-one systems are usually highly versatile and can be used for grid-tie, stand-alone or backup applications but their primary function is self-consumption with the use of storage.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of the inverter for the PV installation

According to the applicable standards, only three-phase inverters must be used for installations above 3.68 kWp, otherwise the installation will not be connected to the power grid. In photovoltaic systems below 3kW, it is recommended to use a single-phase inverter for physical reasons. It is about the value of the voltage that is needed to generate a sine wave, in the case of single-phase inverters it is about 360V, i.e. as much as more or less generated by modules in a 3kW installation.

In cases where the power of the installation is in the range from 3 to 3.68 kW, it is possible to choose the inverter at the discretion. Single-phase inverters, in accordance with the requirements of the power company, can have a maximum power of up to 3.68 kW. The voltage corresponding to a three-kilowatt installation, usually consisting of 10 to 12 modules, ranging on average from 300 to 350 V, is sufficient for a single-phase inverter to achieve high efficiency. This type of inverter is connected to only one phase, so there is a choice of the most stable and optimal in terms of energy consumption. However, it is worth considering the installation of a three-phase inverter, which symmetrically distributes the power to each of the phases, which translates into the stability of the local network - it minimizes the risk of voltage fluctuations and allows the use of narrower wire cross-sections.

PV installation power	<3kW	3-4.6 kW	> 4.6 kW
		single-phase or three-	
Type of inverter	single phase inverter	phase inverte	three phase inverter

In Poland, it is assumed in practice that single-phase inverters are used up to 3kW.

The angle of inclination of the photovoltaic panels

Regardless of whether the photovoltaic installation is installed on the roof or on the ground, great attention is paid to the angle of inclination of the PV panels. We try to arrange the modules so that they can receive the energy flowing from the sun as much as possible. In Poland, the optimal angle of inclination is considered to be 30 degrees, assuming that the panels face south.

Various methods of installing PV panels: on the ground, on a sloping roof, on a flat roof and with tracking.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of photovoltaic panels on the roof of the bus stop.

The main goal of the design task is to use the roof of a bus or train stop to install photovoltaic panels on it and produce electricity by a municipal company.

Due to the small area of the bus stop, it has been assumed that a single-phase inverter will be used, and the nominal power of the panels should not exceed 3kW.

The sentence assumes that the bus stop is not shaded, and the roof is 9m by 2m and is directed at an angle of 30 degrees to the south.

Possible locations of PV panels on the roofs of bus stops.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of photovoltaic panels on the roof of the bus stop.

The fields marked in green should be completed (file: *PV_tasks_student_name.xls*). An example for Białystok has been included in the *PV_tasks_example_Bialystok.xls* file.

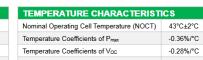
The number of panels should be selected so that all PV panels can be installed on the roof of the bus stop and the total power of PV panels does not exceed 3000 W (3kW).

Below is an example of selecting and checking the dimensions of AS-6M120-HC-370W type PV panels.

P _{inst_max}		3000	W	assumed	power	of the PV	installation	1		
L	. =	9	m	roof lengt	h					
W	-	2	m	roof width	1					
The following type of PV	panel was s	selected from	the catalo	g:						
AS-6M120-HC-370W with the following param	eters:									
Pmax	=	370	W	maximum	n powe	r				
a	=	1.765	m	dimensio	ns					
b	=	1.048	m	dimensio	ns					_
Determining the number	of PV panel	s:								
n=P _{inst_max} /P _{max}	=	3000.0	/	370	=	8.1	=	8.0	PV panels	_
Checking the dimension	s of the pan	els.								_
The total length and widt	h of all pane	els must not o	exceed the	length and v	vidth o	f the roof, r	espect Pely			_
b*n <l< td=""><td>=></td><td>1.048</td><td>x</td><td>8</td><td>=</td><td>8.384</td><td><</td><td>9</td><td>m</td><td>oł</td></l<>	=>	1.048	x	8	=	8.384	<	9	m	oł
a <w< td=""><td>=></td><td></td><td></td><td></td><td></td><td>1.765</td><td><</td><td>2</td><td>m</td><td>oł</td></w<>	=>					1.765	<	2	m	oł
Actual maximum power	of PV instal	lation:								
P _{inst_max_actual} =n*P _{max}	=	8.0	x	370	=	2960	W=	2.96	kW	\backslash
Conclusions:										-

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of photovoltaic panels on the roof of the bus stop.

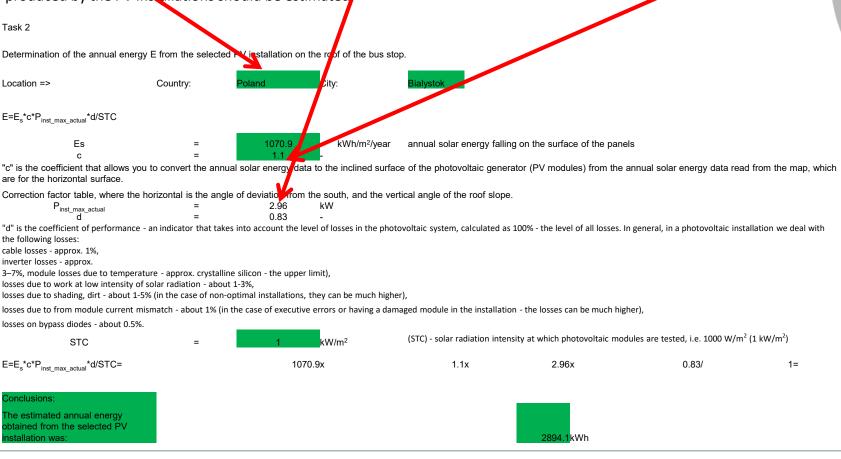

Below is an example of a website with parameters (dimensions, power) of the AS-6M120-HC-370W type PV panel. http://www.weamerisolar.com/d/file/english/produc/pro115/5/2021/06-25/59fcfbe6b48e314826aafc861b2fe3ee.pdf

ELECTRICAL CHARACTERIS				<u> </u>		
Maximum Power (P _{max})	355W	360W	365W	370W	375W	380W
Open Circuit Voltage (Voc)	41.0V	41.2V	41.4V	41.6V	41.8V	42.0V
Short Circuit Current (Isc)	11.09A	11.16A	11.23A	11.30A	11.37A	11.44A
Voltage at Maximum Power (Vmp)	34.0V	34.2V	34.4V	34.6V	34.8V	35.0V
Current at Maximum Power (Imp)	10.45A	10.53	10.62A	10.70A	10.78A	10.86A
Module Efficiency (%)	19.19	19,6	19.73	20.00	20.27	20.54
Operating Temperature			-40°C to	o +85°C		
Maximum System Voltage			1000V DC	/1500V DC		
Fire Resistance Rating		Type 1(in a	ccordance with l	JL1703)/Class C	C(IEC61730)	
Maximum Series Fuse Rating			20	A		

STC: Irradiance 1000W/m², Cell temperature 25°C, AM1.5; Telerance of Pmax: ±3%; Measurement Tolerance: ±3%

Maximum Power (P _{max})	29 SW	267W	271W	275W	279W	283W
Open Circuit Voltage (Voc)	J7.6∨	37.8V	38.0V	38.2V	38.4V	38.6V
Short Circuit Current (Isc)	8.97A	9.03A	9.09A	9.15A	9.21A	9.27A
Voltage at Maximum Power (V _{mp})	31.0V	31.2V	31.4V	31.6V	31.8V	32.0V
Current at Maximum Power (Imp)	8.49A	8.56A	8.64A	8.71A	8.78A	8.85A

MECHANICAL	CHARACTER STICS	TEMPERATURE CHAR
Cell type	Mc rystalline PERC 166*83mm	Nominal Operating Cell Tempera
Number of cells	120 (6x20)	Temperature Coefficients of Pmax
Module dimensions	1765x1048x35mm (69.49x41.26x1.38inches)	Temperature Coefficients of Voc



INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

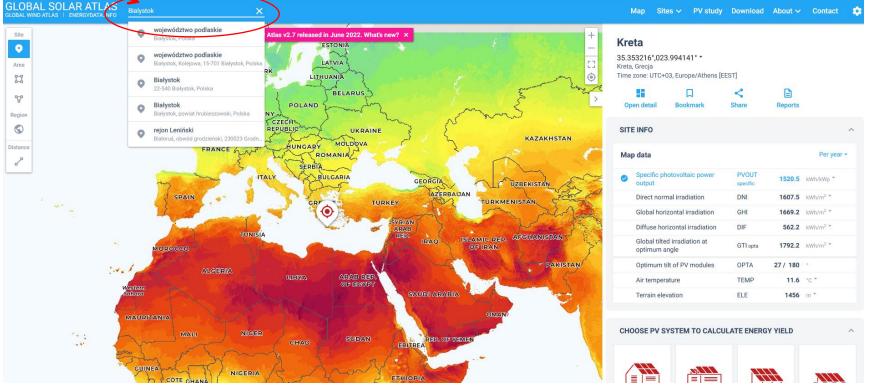
Determination of the annual energy E from the selected PV installation on the roof of the bus stop.

Based on the location of the installation, the power of the selected panels from task 1, the roof inclination angle, the energy produced by the PV installations should be estimated

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Determination of the annual energy E from the selected PV installation on the roof of the bus stop.

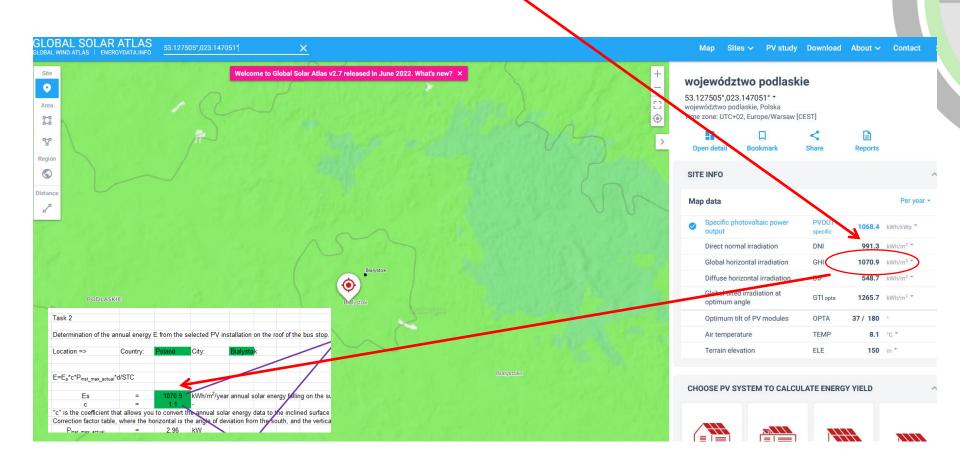
The location as country and city should be taken according to the student's place of residence. Task 2 Determination of the annual energy E from the selected V installation on the roof of the bus s Location => Country: City: E=Es*c*Pinst max actual*d/STC Fs = 1070.9 kWh/m²/year annual solar energy falling on the surface of the panels 1 1 "c" is the coefficient that allows you to convert the annual solar energy data to the inclined surface of the photovoltaic generator (PV modules) from the annual solar energy data read from the map, which are for the horizontal surface. Correction factor table, where the horizontal is the angle of deviation from the south, and the vertical angle of the roof slope. P_{inst_max_actual} 2.96 kW 0.83 = "d" is the coefficient of performance - an indicator that takes into account the level of losses in the photovoltaic system, calculated as 100% - the level of all losses. In general, in a photovoltaic installation we deal with the following losses: cable losses - approx. 1%, inverter losses - approx. 3-7%, module losses due to temperature - approx. crystalline silicon - the upper limit), losses due to work at low intensity of solar radiation - about 1-3%, losses due to shading, dirt - about 1-5% (in the case of non-optimal installations, they can be much higher), losses due to from module current mismatch - about 1% (in the case of executive errors or having a damaged module in the installation - the losses can be much higher), losses on bypass diodes - about 0.5%. (STC) - solar radiation intensity at which photovoltaic modules are tested, i.e. 1000 W/m² (1 kW/m²) STC kW/m² E=Es*c*Pinst max actual*d/STC= 1070.9x 1.1x 2.96x 0.83/ 1= Conclusions: The estimated annual energy btained from the selected PV 2894 1<mark>kWh</mark> stallation was:


INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

To read annual solar energy **Es** falling on the surface of the panels, refer to the Global Solar Atlas website (see other websites as well):

https://globalsolaratlas.info/map?c=31.765537,19.072266,4&s=35.353216,23.994141&m=site

1. The first step is to find the right location: country and city where the stop is located. You can enter the name of the city in the search engineer use the mouse to find the selected city on the man



INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

2. After finding the selected city, on the left side read "Global horizontal irradiation" and enter the value into the Excel file.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Determination of the annual energy E from the selected PV installation on the roof of the bus stop.

The "c" factor for the angle of the panels should be read from the table, where the horizontal angle of deviation from the south is given, and the vertical angle of the roof inclination (we assume that the roof inclination angle is 30 degrees and the deviation from Task 2 the south is 25 degrees, these data can be changed if other values are given in the design).

Determination of the annual energy E from the selected PV installation on the roof of the bus stop. Location => ountry: City: E=Es*c*Pinst max actual*d/STC Fs 1070.9 kWh/m²/vear annual solar energy "c" is the coefficient that allows you to convert the annual solar energy to the inclined surface of the photovoltaic are for the horizontal surface. Correction factor table, where the horizontal is the angle of deviation from the south, and the vertical angle of the 1.05 1 07 1.08 P_{inst_max_actual} 2.96 kW 0.83 1,09 "d" is the coefficient of performance - an indicator that takes into account the level of losses in the photovoltaic system, calcula 1,07 1,08 1,0 the following losses: cable losses - approx. 1%, inverter losses - approx. 3-7%, module losses due to temperature - approx. crystalline silicon - the upper limit), losses due to work at low intensity of solar radiation - about 1-3%, losses due to shading, dirt - about 1-5% (in the case of non-optimal installations, they can be much higher), 0.87 0 80 losses due to from module current mismatch - about 1% (in the case of executive errors or having a damaged module in the inst 0.85 0.87 55 losses on bypass diodes - about 0.5%. (STC) - solar radiation STC kW/m² 0.81 E=Es*c*Pinst max actual*d/STC= 1070.9x 1.1x 0.83 0.85 0.87 0.97 0.93 0.95 0.96 0.97 0.97 0,75 0.85 0,87 0,88 0,89 0,89 0.89 0.71 0.77 0.79 0.80 0.83 0.86 Conclusions: 0,84 0.85 0,85 0,67 0.69 0,71 0.73 0.75 0.77 0.81 0,82 0,83 0.83 0.84 0.85 0.85 0,85 85 The estimated annual energy btained from the selected PV stallation was: 4.1kVVh

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Determination of the annual energy E from the selected PV installation on the roof of the bus stop.

The intensity of solar radiation at which the photovoltaic modules are tested, i.e. 1000 W / m2 (1 kW / m2), should be taken from the data of the selected collector.

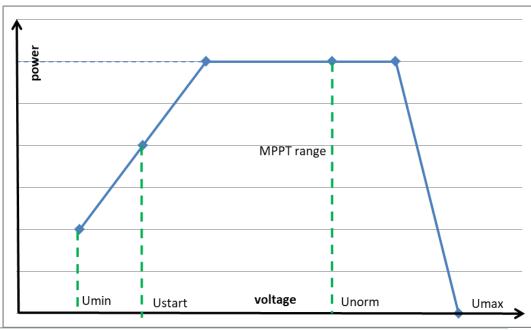
Determination of the annual energy E from the selected PV installation on the roof of the bus stop. Location => Country: City: E=Es*c*Pinst max actual*d/STC ELECTRICAL CHARACTER STICS AT STC Fs 1070.9 kWh/m²/vear Maximum Power (Pmax) 355W 360W 365W 370W 375W 380W 1 1 Open Circuit Voltage (Voc) 41.0V 41.2V 41.4V 41.6V 41.8V 42.0V "c" is the coefficient that allows you to convert the annual solar energy data to the inclined surface (are for the horizontal surface. Short Circuit Current (Isc) 11.09A 11.16A 11.23A 11.30A 11.37A 11.44A Voltage at Maximum Power (Vm 34.0V 34.2V 34.4V 34.6V 34.8V 35.0V Correction factor table, where the horizontal is the angle of deviation from the south, and the vertica Current at Maximum Power (In 10.45A 10.53A 10.62A 10.70A 10.78A 10.86A P_{inst_max_actual} 2.96 kW 0.83 Module Efficiency (%) 19.19 19.46 19.73 20.00 20.27 20.54 "d" is the coefficient of performance - an indicator that takes into account the level of losses in the photovc Operating Temperature -40°C to +85°C the following losses: Maximum System Voltage 1000V DC/1500V DC cable losses - approx. 1%, Fire Resistance Rating Type 1(in accordance with UL1703)/Class C(IEC61730) inverter losses - approx. Maximum Series Fuse Ra 20A ina 3-7%, module losses due to temperature - approx. crystalline silicon - the upper limit), STC: Irradiance 1000W/m², Cell temperature 25°C, AM1.5; Tolerance of Pmax: ±3%; Measurement Tolerance: ±3% losses due to work at low intensity of solar radiation - about 1-3%, ELECTRICAL CHARACTERISTICS AT NOCT losses due to shading, dirt - about 1-5% (in the case of non-optimal installations, they can be much higher), Maximum Power (Pmax) 263W 267W 271W 275W 279W 283W losses due to from module current mismatch - about 1% (in the case of executive errors or having a nage Open Circuit Voltage (Voc) 37.6V 37.8V 38.0V 38.2V 38.4V 38.6V losses on bypass diodes - about 0.5%. 8.97A Short Circuit Current (Isc) 9.03A 9.09A 9.15A 9.21A 9.27A STC kW/m² Voltage at Maximum Power (Vmp) 31.0V 31.2V 31.4V 31.6V 31.8V 32.0V 8.49A 8.56A 8.64A 8.71A 8.78A 8.85A Current at Maximum Power (Imp) E=Es*c*Pinst max actual*d/STC= 1070.9x NOCT: Irradiance 800W/m², Ambient temperature 20°C, Wind Speed 1 m/s MECHANICAL CHARACTERISTICS **TEMPERATURE CHARACTERISTICS** Monocrystalline PERC 166*83mm Conclusions: Cell type Nominal Operating Cell Temperature (NOCT) 43°C±2°C Number of cells Temperature Coefficients of Pmax -0.36%/°C 120 (6x20) The estimated annual energy Module dimensions 1765x1048x35mm (69.49x41.26x1.38inches) Temperature Coefficients of Voc -0.28%/°C btained from the selected PV stallation was: 2894.1kWh

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

The power of the PV generator determines the maximum allowable power value of the PV modules connected to the inverter. The nominal power on the AC (alternating current) side is always slightly lower and determines the maximum power of receivers that can be connected to the inverter, or the maximum amount of energy that can be fed into the grid.

The power of the PV generator is always given for STC conditions, which are rarely achieved in practice. Throughout the year in Poland, energy of the order of $1000W/m^2$ occurs only for a period of several to several hours, which is only about 2% of the total time of solar insolation of PV modules. In the remaining time, the insolation does not exceed the value of 700-850W/m². It follows that it is always better to design an inverter with slightly less power than the power of the PV generator. According to the guidelines of the inverter manufacturers, the power range of the inverters should be in the range of 0.8-1.2 PV generator power.



Selection of PV modules and inverter

Inverter characteristics

The operating range of the inverter is between the voltage U_{start} and the voltage U_{max} . When the voltage on the DC side reaches the value U_{start} , the inverter turns on and starts searching for the maximum power point. If this point is between U_{min} and U_{start} , the inverter will turn on and start running. As long as the voltage does not exceed the minimum value of the MPPT (Maximum Power Point Tracking) range, it operates at partial power. The inverter is most efficient at U_{nom} , so the configuration of PV strings should be close to U_{nom} of the inverter.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

The following slides will provide a step-by-step procedure for selecting the inverter and PV modules for a small PV installation.

An example file for a location in Bialystok (Poland): PV - Tasks example Bialystok PV Task 3.xls

Selection file for PV panels and inverter: PV Task 3.xls

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

Maximum Power (Pma	ix)	360W	365W	370W	375W	380W	385W					
Open Circuit Voltage	,	41.2V	41.4V	41.6V	41.8V	42.0V	42.2V		TEMPERATI	JRE CHARACT	ERISTIC	cs _
Short Circuit Current	(Isc)	11.16A	11.23A	11.30A	11.37A	11.44A	11.51A			g Cell Temperature		43°C±2°C
Voltage at Maximum	Power (V _{mp})	34.2V	34.4V	34.6V	34.8V	35.0V	35.2V			<u> </u>		
Current at Maximum	Power (I _{mp})	10.53A	10.62A	10.70A	10.78A	10.86A	10.94A		Temperature Coe	fficients of P _{max}		-0.36%/°C
Module Efficiency (%))	19.73	20.01	20.28	20.55	20.83	21.10	· · · ·	Temperature Coe	fficients of Voc		-0.28%/°C
Operating Temperatur	re			-40°C t	+85°C				Temperature Coe	fficients of Isc		0.05%/°C
Maximum System Vol	ltage			1000V DC/	1 500V DC							0.0070, 0
Fire Resistance Ratin	9		Type (in a	accordance with	L1703)/Class (C(IEC61730)						
Maximum Series Fuse	e Rating			20	A							
		temperature	•	/								
1		V				ment in CT	Coorditions					
I _{sc}	=	11,3	A				C conditions					
1		11,3					C conditions perature of th		odule,			
I _{sc}	=	11,3 85	A	maxi	mum ope		perature of th		odule,			
I _{sc} Tr	=	11,3 85 0,05	A °C %/°C	maxi	mum ope erature co	rating temporter for	perature of th or lsc.		odule,			
I _{sc} Tr α _T		11,3 85 0,05 I _{SC} (1	$ \begin{array}{c} A \\ ^{\circ}C \\ \%/^{\circ}C \end{array} \\ T \\ T \end{array} $	maxi temp	mum ope erature co	rating temporter for	perature of th or lsc.		odule,			
I _{sc} Tr		11,3 85 0,05 I _{SC} (1	$ \begin{array}{c} A \\ ^{\circ}C \\ \%/^{\circ}C \end{array} \\ T \\ T \end{array} $	maxi temp	mum ope erature co	rating temporter for	perature of th or Isc.			/ 100		

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

	360W	365W	370W	375W	380W	385W	_			
Open Circuit Voltage (Voc)	41.2V	41.4V	41.6V	41.8V	42.0V	42.2V		TEMPERAT	URE CHARACTERI	STICS
Short Circuit Current (Isc)	11.16A	11.23A	11.30A	11.37A	11.44A	11.51A			ng Cell Temperature (NOC	
Voltage at Maximum Power (Vmp)	34.2V	34.4V	34.6V	34.8V	35.0V	35.2V		•	<u> </u>	
Current at Maximum Power (Imp)	10.53A	10.62A	10.70A	10.78A	10.86A	10.94A		Temperature Co	efficients of P _{max}	-0.36%/°C
Module Efficiency (%)	19.73	20.01	20.28	20.55	20.83	21.10		Temperature Co	efficients of Voc	(-0.28%/°C)
Operating Temperature			-40°C to	+85°C				Temperature Co	efficients of Isc	0. 05%/° C
Maximum System Voltage			1000V DC/1	500V DC						0.0070/0
Fire Resistance Rating		Type 1 in a	accordance with UI	L1703)/Class C	(IEC61730)					
Maximum Series Fuse Rating			204	A						
		/								
num PV module voltage a	t minimum t	emperati	Iro '							
num PV module voltage a	it minimum t	emperatu	ure:							B _T]
num PV module voltage a	at minimum t	emperatu	Jre:				Uor	$(\mathbf{T}_r) = \mathbf{U}$	$V_{\rm OC} \left[1 + (T_r - t) \right]$	$25)\frac{\beta_{\rm T}}{2}$
							U _{OC}	$_{\rm C}({\rm T}_{\rm r}) = {\rm U}$	$J_{OC} \left[1 + (T_r - 2) \right]$	$25)\frac{\beta_{\rm T}}{100}$
num PV module voltage a β _T =	-0,28	%/°C		odule terr	nperature c	coefficient,	U _{OC}	$_{\rm C}({\rm T}_{\rm r}) = {\rm U}$	$J_{\rm OC} \left[1 + (T_{\rm r} - 2) \right]$	$\left(25\right)\frac{\beta_{\mathrm{T}}}{100}$
		%/°C	PV m			coefficient, erature of the				$25)\frac{\beta_{\rm T}}{100}$
β _T =	-0,28	%/°C	PV m	um opera		erature of the				$\left(\frac{\beta_{T}}{100}\right)$
β _T = Tr =	-0,28 -25 41,6	%/°C	PV m	um opera	ting tempe	erature of the				$\left[25\right)\frac{\beta_{\mathrm{T}}}{100}$

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

Datasheet	SOFAR	SOFAR 1600TL-G3	SOFAR 2200TL-G3	SOFAR 2700TL-G3
Input (DC)				
Recommended Max. PV input power	1500Wp	2200Wp	3000Wp	3700Wp
Max. Input voltage	500V	500V	500V	550V
Start-up voltage			7	OV
Rated input voltage			50	0V
MPPT operating voltage range	50-500V	50-500V	52-500V	50-550V
Full power MPPT voltage range	110-450V	150-450V	200-450V	250-500V
Max. Input current MPPT			E	2A
Maxnimun DC input short circuit current per	MPPT		13	5A
Number of MPPT/ String per MPPT			I	/1
Input terminal type			MC	4/H4

Allowable number of modules in a string connected in series:

U _{DCmax}	=	550	V	the max	imum al	lowable	voltage at the	input t	o the inv	verter.					
n _{max}	=	550	/	47,42	=	11,598	=	11	sztuk						
			7												
$n_{\max} \le \frac{U_{DC}}{U_{OC}}$	Cmax (T _{min)}		/	U _{OC}	(T _{max}	(x) = U	$J_{\rm OC} \left[1 + 0 \right]$	(T _{max}	_x – 2:	$(5) \frac{\beta_{\rm T}}{100}$	- - - -				
Maximum voltage of the	PV module	U _{oc} (T _{max}):	K												
U _{oc} (T _{rmax})	=	41,6	x[1	+(85	-	25)*	-0,28 /		100]=	34,61	V

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

	Datashe	eet	SOFAR		SOFAR 600TL-G3	SOFA 2200TL		SOFAR 2700TL-G3
	Input (DC)							
	Recommended Max	. PV input power	1500Wp		2200Wp	30000	/p	3700Wp
	Max. Input voltage		500V		500V	500V		550V
	Start-up voltage						70	\mathcal{I}
	Rated input voltage						360\	/
	MPPT operating vol	ltage range	50-500V		50-500V	50-5/0	v	50-550V
	Full power MPPT vo	oltage range	110-450V		150-450V	207-45	0V	250-500V
	Max. Input current I	MPPT					12A	
	Maxnimun DC input sh	nort circuit current per	MPPT				15A	
	Number of MPPT/ S	String per MPPT					1/1	
	Input terminal type						MC4/I	
	on of the minin	num number	of modules	s dug to	o the perm	issible star	ting vol	tage of the i
lati								
	DCstart	=	70 V	K	inverter	start-up volt	age	$n_{\min} \leq \frac{U}{U_O}$

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

ELECTRICAL CHARACTE	PISTICS AT STC							Datash	eet		OFAR 0TL-G3	SOF		SOFAR 2200TL-G		SOFAR
Maximum Power (P _{max})	360W	365W	370W	375V	v :	380W	385W								~	\sim
Open Circuit Voltage (Voc)	41.2V	41.4V	41.6V	41.8	V	42.0V	42.2V	Input (DC)								
Short Circuit Current (Isc)	11.16A	11.23A	11.30A	11.37	'A 1	1.44A	11.51A	Recommended Max	D)/ in put a		500Wp	2200	\A/-	3000Wp		3700Wp
Voltage at Maximum Power (Vmp)	34.2V	34.4V	34.6V	34.8	v :	35.0V	35.2V	Max. Input voltage	c. PV input p		500VVp	500		500V		550V
Current at Maximum Power (Imp)	10.53A	10.62A	10.70A	10.78	A 1	0.86A	10.94A	Start-up voltage			5001	500		5001	70V	5501
Module Efficiency (%)	19.73	20.01	20.28	20.5	5	20.83	21.10	Rated input voltage							360V	
Operating Temperature			- 0°	C to +85°C				MPPT operating voltage range 50-500V				50-50	V00	50-500V	-	50-550V
Maximum System Voltage			1010V	DC/1500V DC	C			Full power MPPT voltage range 110-450V					50V	200-450V		250-500V
Fire Resistance Rating		Type 1	(in accordance wi	ith UL1703)/C	lass C(IEC6	61730)		Max. Input current				12A				
Maximum Series Fuse Rating				20A				Maxnimun DC input sl	nort circuit cu	rrent per MPPT					15A	
STC: Irradiance 1000W/m ² , Cell temp	perature 25°C, AM1.5; To	lerance of Pma	ax: 0~+3% Measu	urement Toler	ance: ±3%			Number of MPPT/	String per M	1PPT					1/1	
Determination of the p β _T	ermissible nun	nber of m -0,31 % 250 V	6/°	PV mod	lule tem	perature	PF of the i coefficien e of the inve	t,						<u>В_(Т</u>		<u></u>
U _{DCmin}	-					•		enter,		UMDD (]	(mov) =		атсь 1	$+ \frac{PT(\mathbf{I}_{m})}{2}$	ax - 2	<u> </u>
U _{MPP(STC)}	=	34,6 V		PV mod	lule MPI	PT volta	ge.					- wir r (,		$+\frac{\beta_{\rm T}({\rm T_m})}{10}$	00	
Determination of the min	imum voltage U_N	_{IPP} (T _{max}):					K									
U _{MPP(Tmax)}	=	34,6 *((+(U	-0,3 ² Cmin	1 *(85 -	2	5)/	100)=		28,16	V
Minimum number of moc	lules:		K	n _{min}		P(T _{max)}										
n _{min}	>=	250 /		28,16	=	8,8765	5 PV modu	les, that is	9 P'	V modules						

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

Selection of PV modules and inverter

		AT STC						Datasheet	SOFAR	SOFAR 1600TL-G3	SOFAR 2200TL-G3	SOFAR 2700TL-G3
Maximum Power (Pr	nax)	360W	365W	370W	375W	380W	385W					\sim
Open Circuit Voltage (Voc) 41.2V		41.2V	41.4V	41.6V	41.8V	42.0V	42.2V	Input (DC)				
Short Circuit Current (Isc) 11.16A		11.16A	11.23A	11. 0A	11.37A	11.44A	11.51A	Recommended Max. PV input po	ower I500Wp	2200Wp	3000Wp	3700Wp
Voltage at Maximum Power (V _{mp}) 34.2V		34.2V	34.4V	34 6V	34.8V	35.0V	35.2V	Max. Input voltage	500V	500V	500V	550V
Current at Maximum Power (Imp) 10.53A		10.53A	10.62A	10. 70A	10.78A	10.86A	10.94A	Start-up voltage				70V
Module Efficiency (%) 19.73		19.73	20.01	20 28	20.55	20.83	21.10	Rated input voltage				360V
Operating Temperature			-40°C to +85°C					MPPT operating voltage range		50-500V	50-500V	50-550V
Maximum System Voltage			100V DC/1500V DC					Full power MPPT voltage range	e 110 50V	150-450V	200-450V	250-500V
Fire Resistance Rating			Type 1(in accordance with UL1703)/Class C(IEC61730)					Max. Input current MPPT				12A
Maximum Series Fu	Maximum Series Fuse Rating			20A				Maxnimun DC input share arcuit cun				15A
STC: Irradiance 1000	W/m ² , Cell temperature 25°C, Checking the ma						ver of the	PV ⁿ generator ^p ând the p		r reaching the		1/1 1/C4/H4
	P _{INV}		=	3700	4	W	allowable	e input power to the inv	<i>l</i> erter,			-
	P _m P _{GEN} =P _m *n _{max}		=	▼370		W	power of a single PV module,					
			=	4070		W	PV gene	rator power.				
	P _{GEN} /P _{INV}	·	=	1,1	F	PRAWDA		$\frac{P_{\text{GEN}}}{P_{\text{INV}}} = (0.8 - 1.2)$				-
	Condition: P _{GEN} /P _{INV}		=		0,8		1,2					-
												-
	P _{INV} *1.2/P _r	m	=		12							-
	Selected:	Selected: 12 PV modules and not less than:				than:	9 PV modules				-	

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

EN

THIS PROJECT HAS BEEN FUNDED WITH SUPPOERT FROM THE EUROPEAN COMMISSION. THIS COMMINICATION REFLECTS THE VIEWS ONLY OF THE AUTOR, AND THE COMMISION CANNOT BE HELD RESPONSIBLE FOR ANY USE WHICH MAY BE MADE OF THE INFORMATION CONTAINED THEREIN.

PL

PUBLIKACJA ZOSTAŁA ZREALIZAOWANA PRZY WSPARCIU FINANSOWYM KOMISJI EUROPEJSKIEJ. PUBLIKACJA ODZWIERCIEDLA JEDYNIE STANOWISKO JEJ AUTORÓW I KOMISJA EUROPEJSKA ORAZ NARODOWA AGENCJA PROGRAMU ERASMUS+ NIE PONOSZĄ ODPOWIEDZIALNOŚCI ZA JEJ WARTOŚĆ MERYTORYCZNĄ.

ES

EL PRESENTE PROYECTO HA SIDO FINANCIADO CON EL APOYO DE LA COMISIÓN EUROPEA. ESTA PUBLICACIÓN [COMUNICATIÓN] ES RESPONSABILIDAD EXCLUSIVA DE SU AUTOR. LA COMISIÓN NO ES RESPONSABLE DEL USO QUE PUEDA HACERSE DE LA INFORMACIÓN AQUI DIFUNDIDA.

LT

ŠIS PROJEKTAS FINANSUOJAMAS REMIANT EUROPOS KOMISIJAI. ŠIS LEIDINYS [PRANEŠIMAS] ATSPINDI TIK AUTORIAUS POŽIŪRĮ, TODĖL KOMISIJA NEGALI BŪTI LAIKOMA ATSAKINGA UŽ BET KOKĮ JAME PATEIKIAMOS INFORMACIJOS NAUDOJIMĄ.

INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES 2019-1-PL01-KA203-065654

GLOCAL - INNOWACYJNE KSZTAŁCENIE PRZYSZŁYCH INŻYNIERÓW ODPOWIADAJĄCE NA PROBLEMY WSPÓŁCZESNYCH MIAST

GLOCAL - INNOVATIVE TRAINING OF FUTURE ENGINEERS RESPONDING TO PROBLEMS OF CONTEMPORARY CITIES

GLOCA

ERASMUS+ 2019-1-PL01-KA203-065654

